L51. N-Queens
recursion divide conquer
Problem:
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both indicate a queen and an empty space respectively.
上下左右对角线都没有duplicate
Example:
Input: 4
Output: [
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."],
["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above.
Solution:
time complexty is 2 to n. because we need to traverse n points, and each of point has two choice, put Q or not.
space complexity is n square.
put . to all the place in the board;
use dfs function to put Q; in this function, i represents rowIndex
is Valid to check all the position is valid to put Q or not;
convertMatrix to make the board
public List<List<String>> NQueen(int n){
List<List<String>> res = new ArrayList<>();
if(n <= 0) return res;
char[][] board = new char[n][n];
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
board[i][j] = '.';
}
}
dfs(res, board, n, 0);
return res;
}
private void dfs(List<List<String>> res, char[][] board, int n, int colIndex){
if(colIndex == n){
res.add(convertMatrix(board));
return;
}
for(int i =0; i < n; i++){
if(isValid(board, i, colIndex)){
board[i][colIndex] = 'Q';
dfs(res, board, n, colIndex+1);
board[i][colIndex] = '.';
}
}
}
private boolean isValid(char[][] board, int x, int y){
for(int i = 0; i < board.length; i++){
for(int j = 0; j < y; j++){
if(board[i][j] == 'Q' && (x == i || Math.abs(x-i) == Math.abs(y-j)))
return false;
}
}
}
private List<String> convertMatrix(char[][] board){
List<String> list = new ArrayList<>();
for(int i = 0; i< board.length; i++){
list.add(new String(board[i]));
}
return list;
}
Last updated
Was this helpful?